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ABSTRACT

A set of algorithms is presented for computing the apparent directions of planets and stars on any date
to milliarcsecond precision. The expressions are consistent with the new IAU astronomical reference
system for epoch J2000.0. The algorithms define the transformation between fundamental reference
data, such as star and radio-source catalogs and planetary ephemerides, and astrometric observables.

I. INTRODUCTION

This paper presents a set of algorithms for computing the
apparent, topocentric, and astrometric places of planets and
stars within the new IAU fundamental astronomical refer-
ence system. The new IAU reference system is that defined
by the IAU (1976) System of Astronomical Constants and
related resolutions passed by the IAU in 1979 and 1981. The
new system has been in use since 1984 in the international
ephemerides and by the Earth rotation and precise-time
community. The new FKS5 fundamental star catalog (in
preparation; available in machine-readable form) embodies
this system. It is generally understood that in astronomical
publications, data referred to the epoch designated
“J2000.0,” which is Julian Date 2451545.0, are consistent
with this system; proper use of such data requires adherence
to the various IAU resolutions mentioned above in any cal-
culations or procedures. The system has been described by
Kaplan (1981), Melbourne ez al. (1983), and in the Supple-
ment to the Astronomical Almanac of 1984.

This paper is part of a four-paper series describing the
implications of the new system for astrometric computations
and the data derived therefrom. Paper I (Smith ez al. 1989)
describes the computations relevant to the construction of
fundamental astrometric catalogs, and, in particular, the
conversion of data from old star catalogs to the new system.
Paper II (Yallop e al. 1989) presents the results of Paper I
in a simple-to-apply 6 X 6 matrix form for transforming data
from the FK4 (B1950.0) system to the FK5 (J2000.0) sys-
tem. This paper, Paper I1I, describes the algorithms for ob-
taining angular “observables” from reference data. In par-
ticular, this paper describes the procedures for obtaining
apparent, topocentric, and astrometric places of planets and
stars. Paper IV (Hughes et al. 1989) explores the computa-
tional considerations at the milliarcsecond level of precision.

The developments presented here draw heavily upon pre-
vious work by Scott and Hughes (1964 ), Emerson (1973),
Mueller (1969), and Murray (1981,1983). Sections III and
IV follow (with some modifications) the procedures out-
lined in the Astronomical Almanac by Yallop, where numeri-
cal examples may be found. The individual algorithms for
precession, aberration, etc., are not new, but the application
of the recent IAU resolutions to these computations has re-
ceived little attention. More importantly, this paper presents
a unified development of a number of frequently required
astrometric computations that heretofore have been scat-
tered throughout the literature and considered only within a
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narrow context. The presentation format is intended to facil-
itate the practical application of the algorithms even by non-
specialists.

II. BASIC CONCEPTS

a) Reference Points

A compiled astrometric star catalog typically consists of
tabulations of “mean places,” associated proper motions,
and other relevant information for some appropriately cho-
sen stars, applicable to a particular reference epoch such as
J2000.0. The mean place of a star can best be described as
representing the direction of the star as it would be seen from
the solar system barycenter at the reference epoch, in the
coordinate system defined by the Earth’s mean equator and
equinox at the reference epoch, if the masses of the Sun and
other solar system bodies were negligible. The proper mo-
tion is essentially the time derivative of the mean place. The
mean place is thus a fundamental reference point for star
catalogs but it bears little relation to the position at which a
star will be observed from Earth on a particular date.

The transformation described in Papers I and II is a
“mean place to mean place” conversion. That is, it trans-
forms catalog mean places and proper motions from one
reference epoch (B1950.0) to another (J2000.0). The com-
plexity of the transformation results from the changes in
constants, timescales, and procedures mandated by the IAU
for epoch J2000.0 catalog data. A specific complication
arises from the fact that mean places in star catalogs of stan-
dard epoch B1950.0 invariably were adjusted for the so-
called “E terms” of aberration and therefore were not true
mean places according to the above definition. For star cata-
logs of standard epoch J2000.0, the listed star positions are
not to be contaminated by the E terms. (See Paper I for a
more complete discussion.) Therefore, in the developments
in this paper, we assume that a star’s catalog mean place is its
true mean place without any £ term adjustment.

Another reference point, the “apparent place” of a star,
has been defined which is more pertinent to observations on
a particular date. The apparent place of a star represents the
position of the star as it would be seen from the center of
mass of the Earth at some date, in the coordinate system
defined by the Earth’s true equator and equinox of date, if
the Earth and its atmosphere were transparent and nonre-
fracting. The transformation between the catalog mean
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place of a star and its apparent place on some particular date
is an astrometric computation of fundamental importance.

Of course, the word “‘star,” as used in this paper, is a gen-
eric term referring to any observable body outside of the
solar system; included are extragalactic radio sources, pul-
sars, infrared objects, etc. However, except for a few pulsars,
proper-motion information is not available (at the present
time) for these objects.

For a planet or other solar system body there is, of course,
no catalog mean place; the corresponding data are ephemer-
ides, with respect to the solar system barycenter, in some
well-defined nonrotating rectangular coordinate system.
The ephemeris, whatever its actual representation, can be
thought of as a time series of position vectors, each vector
representing the position of the body at some date within the
barycentric reference system. The concept of apparent place,
as stated above for stars, is equally applicable to solar system
bodies. Again, the transformation between the barycentric
ephemeris of a solar system body and its apparent place on
some particular date is of great practical importance.

Since we do not actually observe from the center of the
Earth, we must also consider “topocentric place,” which is
the apparent direction of an object as it would be seen by a
real observer on the surface of the Earth, neglecting atmo-
spheric refraction. More precisely, the topocentric place rep-
resents the position of a star or planet as it would be seen
from a specific location on Earth at some date and time, in
the coordinate system defined by the Earth’s true equator
and equinox of date, if the atmosphere were nonrefracting.

Two other reference points, which we term the “virtual
place” and “local place” of a star or planet, are useful when
measurements of an object’s position are to be made differen-
tially with respect to other objects in the same general direc-
tion. The virtual and local place correspond to the apparent
and topocentric place but are simpler to compute, since cal-
culations relating to the orientation of the final coordinate
system are omitted. The virtual place is thus simply an ap-
parent place expressed in the coordinate system of the origi-
nal reference data, that is, the coordinate system defined by
the Earth’s mean equator and equinox at the reference ep-
och. The local place is simply a topocentric place expressed
in the coordinate system of the reference data. For differen-
tial measurements the coordinate system in which the object
positions are expressed is relatively unimportant; in practice,
its orientation is considered arbitrary and subject to deter-
mination from the observations themselves. The virtual and
local place can also be useful in the computation of the cir-
cumstances of coordinate-system independent phenomena.

Traditionally, in differential work, if the field of view is
sufficiently small, some physical effects that alter an object’s
apparent direction have been neglected. They are assumed to
apply equally to all objects within a small field so that differ-
ential measurements are insensitive to them. These latter
assumptions effectively define another reference point,
called the “astrometric place,” which is even simpler to com-
pute than the virtual or local place. Although the astromet-
ric place is well rooted in astrometry because of its conven-
ience and simplicity, given current computing power it
probably should be avoided in the reduction of high-preci-
sion observations.

b) Fundamental Coordinate System

In the following developments, it is assumed that funda-
mental reference data such as star positions and proper mo-
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tions or the barycentric ephemeris of a planet are expressed
in what we call the “space-fixed” coordinate system (or
frame). The spatial origin of the space-fixed system is the
solar system barycenter, and the orientation of the coordi-
nate axes is defined by the Earth’s mean equator and equinox
at the standard epoch ¢, which for this paper is assumed to
be J2000.0, JD 2451545.0 in the TDB timescale (see below).
Specifically, our fundamental space-fixed system is a right-
handed system oriented such that the xy plane is parallel to
the Earth’s mean equator at epoch #,, the x axis points to-
ward the mean equinox of ¢, and the z axis points towards
the mean north celestial pole of ¢,. Either spherical or rectan-
gular coordinates may be used within this system. The posi-
tions listed in recently published star catalogs (such as the
FK35) or solar system ephemerides (such as the DE 200
ephemeris from the Jet Propulsion Laboratory) are referred
to such a coordinate system.

This space-fixed coordinate system is considered to be in-
ertial in the classical (or special relativistic) sense; the solar-
system barycenter is assumed to be unaccelerated. Obvious-
ly, we can introduce other, similar inertial systems: those
with coordinate axes identically oriented and moving with a
constant velocity with respect to the fundamental space-
fixed system. Specific systems of the latter variety that are
useful in the following developments are those with origins
that coincide, at a specific epoch, in both position and veloc-
ity with that of either the center of the Earth or the observer.
These coordinate systems suffice for the developments pre-
sented here, which are basically classical (Euclidian/New-
tonian); relativity appears as a post-Newtonian approxima-
tion in only a few places.

¢) Timescales

Throughout the following sections, reference is made to
two fundamental timescales defined by the IAU: TDB, Bar-
ycentric Dynamical Time, and TDT, Terrestrial Dynamical
Time. See Kaplan (1981) for a brief description of these
timescales as provided by the relevant IAU commissions, or
Winkler and Van Flandern (1977) or Moyer (1981a,b) for
more complete discussions. TDB is a theoretical timescale
which is a measure of “coordinate time” (in the terminology
of general relativity) for a coordinate system whose spatial
origin is the solar system barycenter, such as our space-fixed
frame. As such, TDB cannot be maintained by any real
clock; it is mathematically derived from TDT (expressions
are given below). TDT, on the other hand, is for practical
purposes readily available to high precision. Practically,
TDT is simply a constant offset from TAI, International
Atomic Time: TDT = TAI + 32:184. TAI, in turn, is an
integral number of seconds offset from UTC, Coordinated
Universal Time. UTC is widely distributed since it is the
basis for the worldwide system of civil time. The TAI-UTC
offset is 24 s in 1989; this offset advances whenever a “leap
second” is introduced into UTC. Thus, during 1989 TDT is
simply UTC + 56:184.

d) Algorithm Overview

We develop the transformations between the reference
points defined above beginning with stellar or planetary ref-
erence data assumed to be expressed in the fundamental
space-fixed system. We use position vectors in rectangular
coordinates throughout; all three dimensions are considered
relevant. It is clear that for a solar system body, the barycen-
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tric ephemeris represents its motion through space with re-
spect to the space-fixed system. It may not be quite so ob-
vious that the catalog mean place and proper motion of a
star, together with its parallax and radial velocity (if
known), can also be transformed into a representation of its
motion through space with respect to the three-dimensional
space-fixed reference frame. Deferring for now the discus-
sion of how this might be done, it is clear that if the space
motion of a star and a solar system body can be similarly
represented, then the algorithms used for the transforma-
tions between the reference points must be virtually identical
in the two cases.

We have implemented transformation algorithms that
take advantage of this fact. The algorithms are implemented
as a system of FORTRAN subroutines which have been widely
distributed and used. Solar system bodies and stars are treat-
ed similarly throughout; the distinction between the two
cases results only from the different schemes required to ob-
tain the three-dimensional position vector of the object in
space at the relevant time. The formulation used is vector-
and matrix-based, modular, and does not employ spherical
trigonometry or Besselian Day Numbers at any point. Since
the same basic subroutines are used for all objects, both with-
in and outside of the solar system, the position vectors
formed and operated on by these routines place each rel-
evant object at its actual distance (in AU) from the solar
system barycenter. Objects at unknown distance (parallax
undetermined or zero to within the accuracy of measure-
ment) are placed on the “celestial sphere,” herein defined to
have the somewhat arbitrary radius of 10 Mpc (2.06 X 10"
AU).

In Sec. III, immediately following, we describe in detail
the algorithms used to compute the apparent place of a plan-
et, given its ephemeris with respect to the solar system bary-
center. In Sec. IV is a description of the modifications re-
quired in the algorithms to compute the apparent place of a
star, given its catalog mean place and proper motion at some
reference epoch (e.g., J2000.0). Section V is a discussion of
some considerations involved in the computer implementa-
tion of these algorithms. Then, in Sec. VI, topocentric place
computations are described. In Sec. VII, virtual place, local
place, and astrometric place computations for stars and
planets are covered. Finally, in Sec. VIII, we discuss a gen-
eral method of computing geometry-sensitive observables
for modern high-precision observing techniques.

All vectors used below are column vectors.

III. APPARENT PLACE ALGORITHM FOR PLANETS

The algorithm used to compute the apparent place of a
planet or other solar system body at an epoch of observation
t', given its ephemeris with respect to the solar system bary-
center, can be succinctly represented as

u(t’) =N@P() f{glu(t— ) —E@)]}, (1
where:

t' = epoch of observation, in the TDT timescale,

t = epoch of observation, in the TDB timescale,

7 = light travel time from the planet to the Earth, in the
TDB timescale, for light arriving at the epoch of ob-
servation ¢,

u(z — 7) = position of the planet with respect to the solar

system barycenter at epoch ¢ — 7,

E(#) = position of the Earth with respect to the solar sys-

tem barycenter at the epoch of observation ¢,
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g(...) = function representing the gravitational deflection
of light,

f(...) = function representing the aberration of light,

P(¢) = precession rotation matrix, evaluated for the ep-
och of observation ¢,

N(#) = nutation rotation matrix, evaluated for the epoch
of observation ¢, and

u(?') = apparent place of the planet at the epoch of obser-
vation ¢’, represented as a three-dimensional po-
sition vector with origin at the center of mass of
the Earth.

This expression is schematic; the full functional forms of f
and g, the elements of the P and N matrices, and other auxil-
iary calculations are not indicated. In typical computer im-
plementations, the algorithm is actually evaluated in a step-
wise fashion by successive calls to a sequence of subroutines,
each of which handles one particular aspect of the problem.
The formulations used at each step are described in detail
below. Since most of the steps are also used in the computa-
tion of the apparent places of stars (see Sec. IV) the formula-
tions and discussion are presented in as much generality as
possible, with possible simplifications noted where appropri-
ate.

a) Determine Relevant Time Arguments

Step (a): Express the epoch of observation ¢’ as a TDT
Julian Date.

Step (b): Compute T, the number of Julian centuries in
the TDT timescale from J2000.0 TDT (JD 2451545.0
TDT):

T' = (t' — 2451545.0)/36525. (2)

Step (c): Compute the mean anomaly m of the Earth in its
orbit, in radians, at the epoch of observation:

m = (357.5 + 35999.1 T')2w/360. (3)

Step (d): Compute s, the difference, in seconds, between
the clock readings in the two timescales (in the sense
TDB — TDT), and ¢, the TDB Julian Date corresponding to
the epoch of observation:

s =0.001658 sin(m + 0.01671 sin m)
t=1t'+ 5/86400, 4)

where the formula for s is an adaptation from Moyer
(1981b).

Step (e): Compute T, the number of Julian centuries in
the TDB timescale elapsed since J2000.0 TDB (JD
2451545.0 TDB):

T = (t—2451545.0)/36525. 3

In the expression for s, lunar and planetary terms of order
10~ s have been ignored. Furthermore, the expression for m
(step ¢) strictly requires a time argument in the TDB, not
the TDT, timescale (see Moyer (1981a,b) for a complete
discussion). However, the algorithm given above is much
more precise than is required for the computation of appar-
ent places of stars and most solar system bodies. For stellar
apparent places, one canset s =0, 7 =1¢', and T= T' with
negligible error. For solar system bodies, the same approxi-
mation can be used for all bodies except the Moon and close-
approaching comets and asteroids, where the error in using
the ¢ = t' approximation may approach 1 mas in very unfa-
vorable circumstances.
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b) Obtain Ephemeris Data for the Earth and Sun

Step (f): Enter the ephemeris of positions of solar system
bodies and extract the position and velocity vectors of the
Earth for time ¢, with respect to the solar system barycenter.
(The position and velocity of the center of mass of the Earth,
not that of the Earth-Moon barycenter, are the relevant
quantities.) In the following developments, it is assumed
that the vector components are in units of AU and AU/day,
respectively, and are in the coordinate system defined by the
Earth’s mean equator and equinox of #,, the reference epoch
J2000.0. Call these two vectors E(¢) and E(z).

Step (g): Enter the ephemeris of positions of solar system
bodies and extract the position vector of the Sun for time ¢,
with respect to the solar system barycenter. The vector com-
ponents should be in AU and must be in the coordinate sys-
tem defined by the Earth’s mean equator and equinox of the
reference epoch. Call this vector S(z); form the vector
E'(t) = E(¢) — S(t), which represents the heliocentric po-
sition of the Earth at the time ¢ of observation.

Alternatively, enter the solar system ephemeris and di-
rectly extract the heliocentric position vector E'(¢) of the
Earth for time # of observation.

The new standard ephemeris of the major bodies in the
solar system is the Jet Propulsion Laboratory ephemeris de-
signated DE 200 (Standish 1982). The positions of the Sun,
Moon, and planets given in the Astronomical Almanac and
other international almanacs are now obtained from this
ephemeris. Values for the vector components of E, E, and
— E' at 1-day intervals are tabulated in the Astronomical
Almanac. A set of analytical planetary theories (closed-form
expressions) fitted to DE 200 has been developed by Bretag-
non (1982).

The barycentric position of the Earth is used to form the
geocentric position vector of the body of interest (see Secs.
111 d and III e below ); the barycentric velocity of the Earth
is used in the aberration computation (Sec. III g); and the
heliocentric position of the Earth is used in the computation
of the relativistic gravitational deflection of light (Sec.

11 /).
¢) Obtain Ephemeris Data for the Planet

Step (h): Enter the ephemeris of positions of solar system
bodies and extract the position vector of the planet for time ¢,
with respect to the solar system barycenter. The vector com-
ponents should be in AU and must be in the coordinate sys-
tem defined by the Earth’s mean equator and equinox of #,,
the reference epoch J2000.0. Call this vector u(t).

d) Compute Geometric Distance Between Earth and Planet

Step (i): Compute d, the geometric distance between the
positions of the centers of mass of the planet and the Earth at
time ¢, in AU:

d=|u(z) —E(2)|. (6)
The geometric distance d is the quantity tabulated in the
Astronomical Almanac as the “true distance” of solar system

bodies. Using d, compute 7, a first approximation to the light
travel time between the planet and the Earth:

r=d/c, @)

where ¢’ is the speed of light expressed in AU/day; it is ob-
tained from 86400/7,, where 7, is the light-time for unit
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distance (1 AU) in seconds. In the IAU (1976) System, 7,
=499.004782 s, so ¢’ = 173.144633 AU/day.

e) Compute Geocentric Position of Planet, Accounting for
Light Time

Step (j): Enter the ephemeris of positions of solar system
bodies and extract the position vector of the planet for time
t — 7, with respect to the solar system barycenter. This vec-
torisu(z — 7).

Step (k): Form the vector u,:

u;=u(z—7) —E(®). (8)

The vector u; represents an approximation to the geocentric
position of the planet as it would be seen from Earth at the
epoch of observation .

Step (1): Next, compute 7/, a better approximation to the
light travel time between the planet and the Earth:

7= |us|/c. 9

Compare 7' with 7; if they are identical within some small
tolerance, continue to step (m). If they are not, then replace
the value of 7 with the value of 7 (7' —7) and repeat steps
(j)—(1) until the light time converges to within the tolerance
permitted. Since the speed of bodies in the solar system is
small compared to the speed of light, this process converges
rapidly.

The tolerance permitted depends on the precision desired
in the final coordinates and the apparent angular speed of the
body as viewed from Earth. The most rapidly moving objects
in the sky are the Moon (angular rate approximately 0.5
arcsec/s), Mercury (angular rate at inferior conjunction
0.05 arcsec/s), and the Sun (angular rate 0.04 arcsec/s).
However, occasionally an Earth-crossing asteroid or comet
may exceed these rates for short periods of time. For a com-
putational precision of one milliarcsecond, therefore, the
light time convergence tolerance must be 0.002s = 2 10~#
days or less; we use 1X 1078 days.

Yallop’s development in the Astronomical Almanac uses a
more complex formula in place of Eq. (9) above. Yallop’s
formula is essentially that of Murray (1981) and contains a
term accounting for the extra relativistic delay due to the
Sun’s gravitational field. However, the relativistic term adds
no more than a few tenths of a millisecond to the light time in
the worst case (an outer planet at superior conjunction near
the Sun’s limb) and can affect the angular coordinates of a
solar-system body only at the microarcsecond level. There-
fore we have neglected this term; without it, the formula in
the Astronomical Almanac reduces to Eq. (9). The term is
obviously important for radar-ranging observations, but
these require a more complex algorithm anyway since in this
case it is the round-trip light time that is the observable.

Step (m): Set u, = u(¢ — 7), where 7 is the final (con-
verged) value of the light travel time. The vector u, repre-
sents the position of the body at time ¢ — 7 with respect to the
barycenter of the solar system.

f) Evaluate and Include the Effect of the Relativistic
Deflection of Light in the Sun’s Gravitational Field

Step (n): Form the vector q:
q=E'(t) +u,, (10)

where E’'(¢) is the heliocentric position of the Earth from
Sec. ITI b (step (g)). The vector q represents the heliocentric
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position of the body. Alternatively, if the vector S(¢) is avail-
able (from step (g)), the vector q can be formed using

q=u, —S(n). (11)
Step (0): Form the following unit vectors:
i =uy/|uy,
eE=E)/|E@®)], (12)
a=q/|q,
and the following dimensionless scalar quantities:
26 2%k?
EEPEOM - AEWD]
&=1+1a8 (13)

where G is the heliocentric gravitational constant, ¢ and ¢’
are the speed of light (in m/s and AU/day, respectively), 4
is the number of meters in 1 AU, and k is the Gaussian
gravitational constant. The values of these constants, from
the IAU (1976) System, are: G = 1.327 124 38 10%
m3s72, ¢ =299 792 458 m/s, A= 1.495978 70X 10'' m,
and k% = (0.017 202 098 95)> AU® day 2. From step (i),
¢’ = 173.144 633 AU/day. The value of g, is always close to
2X 1078, while g, varies between 0 and + 2.

Step (p): The deflected geocentric direction of the body is
then given by the vector u,:

= i+ £ G0 - e0ra1) (14)

2

The algorithm for the deflection of light given above is
that of Yallop as given in the Astronomical Almanac (1984,
p. B37), which is an adaptation of Murray’s (1981) formu-
las. The isotropic metric has been assumed. Only the Sun’s
gravitational field has been included; each of the planets
causes a similar effect that is smaller by a factor equal to the
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ratio of planet’s mass to that of the Sun (1/1047 for Jupiter).
The gravitational field of the Earth, also ignored here, can
deflect light by a few tenths of a milliarcsecond for ground-
based observers.

It should be mentioned that using the vector E’(¢) (and
S(#)) in the relativistic deflection computation introduces a
minor approximation resulting from the use of the barycen-
tric position of the Sun at the epoch of observation . The
resulting error cannot exceed 0.1 mas in the worst case (ob-
ject observed at the limb of the Sun with barycentric motion
of Sun orthogonal to line of sight) and is generally much less.
Furthermore, the deflection algorithm itself results from a
first-order development which assumes small deviations of
the photon track from a straight line in Euclidian space; the
error in neglecting second-order effects can reach about 0.5
mas for an object observed at the Sun’s limb (Kammeyer
1988).

Figure 1 shows the magnitude of the relativistic deflection
of light, as viewed from Earth, for planets and stars as a
function of the geocentric angular separation of the observed
body from the center of the Sun. The figure was produced
from Eq. (14) assuming circular orbits for the planets.

If we are interested in only the magnitude of the gravita-
tional deflection (its direction as viewed from Earth is al-
ways radially outward from the Sun), then Eq. (14) can be
reduced to a very simple form. Under the assumption that
the Earth’s distance from the Sun is constant, Eq. (14) is
equivalent to the following formula for the magnitude of the
small angle describing the gravitational deflection:

¢ =g, tan(y/2), (15)

where g, = 0.004 07 arcsec, and ¢ is the heliocentric angular
separation of the Earth and the observed body. The variation
in the Earth—Sun distance modulates the value of g, by less
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than 2%. This simple form of the gravitational deflection
formula has been noted previously by Shapiro (1967) and by
Fukushima (1982). In this form, the deflection is not expli-
citly dependent on the distance of the emitting body from the
Sun or the Earth. Therefore, to an observer on Earth, the
apparent gravitational deflection is the same for all objects
that lie anywhere on a given line which extends radially
outward from the Sun. This nonintuitive result holds regard-
less of the orientation of the line with respect to the Earth.
Both Egs. (14) and (15) have an indeterminacy for light
originating beyond the Sun on the extension of the Sun-
Earth line; bodies there are hidden by the Sun’s disk and
unobservable in any event. For these bodies or the Sun itself,
the deflection can be considered to be zero so that u, = u,.

g) Evaluate and Include the Aberration of Light
Step (q): Form the following scalar quantities:

T =|u,l/c,
B=E()]|/c,
E(2)
p=_220
D= B ] (16)
7’_1 = 1 '—B s
fi=Bcos D,

L=11+A/0+y D]
In the above, ¢’ is the speed of light expressed in AU/day,
carried from step (i).
J

cosgcosfcosz —sinfcosfcosz —sinfcosz
— sind sin z —cos§sinz
P=|cosfcosfsinz —sin{cosfsinz —sinfsinz
+ sin § cos z + cos { cos z
cos & sin 6 —sin {'sin 8 cos 6
u, = Pus.
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Step (r): The aberrated geocentric direction of the body is
then given by the vector us:

u = [y 'u, + AE(ND /(14 1£). (17
Again, we base our algorithms on Murray’s (1981) devel-
opment.

The above algorithm includes relativistic terms, which are
of order 1 mas. Therefore, for many applications the much
simpler classical formula may be used:

u =u, + E(5)7. (18)

h) Apply Precession to the Coordinate System

Step (s): Evaluate the three fundamental precession an-
gles:

£ =12306.2182 T+ 0.30188 T+ 0.017998 T3,
z==2306.2181 T+ 1.09468 T2+ 0.018203 T~ (19)
6 =2004.3109 T — 0.42665 T* —0.041833 T>.

The above angles are expressed in arcseconds. T (from step
(e)) is the number of Julian centuries in the TDB timescale
between J2000.0 and the epoch of observation. The above
formulas apply only to precession of coordinates from refer-
ence epoch J2000.0; they are adaptations of more general
formulas given by Lieske et al. (1977) and Lieske (1979).

Step (t): Transform the coordinate system to that defined
by the mean Earth equator and equinox at the epoch of ob-
servation, by forming the precession rotation matrix P and
applying it to the vector us:

, (20)

21

The above rotation matrix is taken from the Explanatory Supplement to the Ephemeris (1961), pp. 31 and 34.

i) Apply Nutation to the Coordinate System

Step (u): Obtain the two fundamental nutation angles Ay
and Ae. These may be obtained by interpolating the daily
values given in the Astronomical Almanac to the epoch of
observation ¢. Alternatively, the two 106 term series for Ay
and Ae may be evaluated for the epoch of observation. The
complete series and related formulas are given in Seidel-
mann (1982), Kaplan (1981), and the Supplement to the
Astronomical Almanac for 1984. The theory of nutation is
that of Wahr (1981), which has been adopted by both the
IAU and the IUGG.

Step (v): Compute the values for the mean obliquity of the

ecliptic € and the true obliquity of the ecliptic €’ for the epoch
of observation:

€= 84381.448 — 46.8150 T — 0.00059 T*

+0.001813 T3, (22)
€ =€+ Ae. (23)

The above angles are expressed in arcseconds. The expres-
sions are from Lieske ez al. (1977); the value of the obliquity
at J2000.0, 23°26’ 217448, is from the IAU (1976) System.

Step (w): Transform the coordinate system to that de-
fined by the true Earth equator and equinox at the epoch of
observation, by forming the nutation rotation matrix N and
applying it to the vector ug:

J
cos Ay —sin Ay cos € —sin Ay sin e
sin Aycos € cos Ay cos ecos € cos Ay sin € cos €
N= + sin € sin €' —cosesine |, (24)
sin Aysine’  cos Acosesin€  cos Ay sin € sin €
— sin € cos €’ + cos €cos €
u, = Nu,. (25)
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The above rotation matrix is taken from Emerson (1973).
Note that the above is the complete rotation matrix for nuta-
tion without any approximations; the approximate matrix
given on p. 43 of the Explanatory Supplement to the Ephe-
meris cannot be used where precisions of better than a half
milliarcsecond are required.

One can use the combined precession-nutation matrices
given in the Astronomical Almanac in place of steps (s)—(w)
above. The precession—-nutation matrix given in the 4stro-
nomical Almanac is R = NP. The values of the elements of
this matrix must be interpolated to the epoch of observation.
Then, the following formula can be used in place of steps
(s)—(w) above:

u; = Ru,. (26)

J) Express Position Vector of the Body in Spherical
Coordinates

Step (x): Compute the object’s apparent right ascension
a’ and declination &', using the three components of vector
Uy, U4(x), u7(p), and u,(z):

w = u; () + u,(»)?,

a = arctan(m), (27)
u,(x)
&= arctan(u7—(z)).
w

Most computers have double-argument arctangent func-
tions which will provide the correct quadrant if the numera-
tors and denominators given above are entered separately.
The resulting values for a’ and &' represent the geocentric
apparent place of the object at the epoch of observation.

IV. APPARENT PLACE ALGORITHM FOR STARS

The algorithm used to compute the apparent place of a
star at an epoch of observation ¢, given its mean place, prop-
er motion, and other data (as available) at reference epoch
ty, can be succinctly represented as

u(z’) = NP () f{glu(zy)
+u() (1 —1) —E()]} (28)
where:

t' = epoch of observation, in the TDT timescale,

t = epoch of observation, in the TDB timescale,

t, = reference epoch (e.g., J2000.0) of the star catalog, in

the TDB timescale,

u(?,) = catalog mean place of the star at the reference
epoch ¢, represented as a three-dimensional posi-
tion vector with origin at the solar system bary-
center,

u(f,) = space motion of the star at the reference epoch ¢,,
obtained from the catalog proper motion, paral-
lax, and radial-velocity values, represented as a
three-dimensional velocity vector with origin at
the solar system barycenter,

E(¢) = position of the Earth with respect to the solar sys-
tem barycenter at the epoch of observation ¢,

g(...) = function representing the gravitational deflection
of light,

f(...) = function representing the aberration of light,

P () = precession rotation matrix, evaluated for the ep-
och of observation ¢,
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N(#) = nutation rotation matrix, evaluated for the epoch
of observation ¢, and

u(¢') = apparent place of the star at the epoch of observa-
tion t’, represented as a three-dimensional posi-
tion vector with origin at the center of tass of the
Earth.

This expression is quite similar to the one given at the begin-
ning of Sec. I1I for planets. Most of the algorithms are identi-
cal; the difference is due only to the more complex motion of
a planet compared to that of a star. In Sec. III we had to
obtain the position of the planet from an ephemeris and deal
with the light-time problem explicitly; in this section we will
assume uniform rectilinear motion for the star and neglect
variations in light-time as the star moves. Details of the steps
follow.

The developments for a star can also be used for an extra-
galactic object, where the catalog proper motion and paral-
lax are zero.

a) Determine Relevant Time Arguments

Steps (a)—(e): Follow steps (a)—(e) in Sec. III a. This
results in the determination of the value of 7, the TDB Julian
Date corresponding to the epoch of observation, and 7, the
number of Julian centuries in the TDB timescale elapsed
from J2000.0 TDB. For stars, one can skip the computation
of m and assume s = 0; that is, skip step (c¢) and for step (d)
simply set t =1¢".

b) Obtain Ephemeris Data for the Earth and Sun

_ Step (f): Follow step (f) in Sec. III b to obtain E(¢#) and
E(?), the position and velocity vectors of the Earth for time
t, with respect to the solar system barycenter.

Step (g): Follow step (g) in Sec. III b to obtain E'(¢), the
heliocentric position vector of the Earth for time ¢, or S(¢),
the position vector of the Sun for time ¢ with respect to the
solar system barycenter.

For apparent places of stars, the necessary ephemeris data
can be obtained in a number of ways, since relatively low-
precision ephemeris data are required. For stellar apparent
place accuracies of a few milliarcseconds, it is necessary only
to obtain the vector components to 3 significant digits in
position and 5 significant digits in velocity. It is feasible to
construct relatively compact closed-form algorithms which
provide this accuracy. For example, we have coded a com-
puter subroutine that provides the positions and velocities of
the Earth by evaluating a truncated, modified form of New-
comb’s theory; no reference to an external file is required.
However, for the highest precision, or when the apparent
places of planets are being computed, either an external file
of positions of solar system bodies or significantly more com-
plex closed-form algorithms must be employed.

¢) Express Catalog Data for the Star as a Position and Velocity
Vector

Step (h): Let a and & represent the catalog mean right
ascension and declination of the star at ¢, the reference ep-
och J2000.0. Let ., and s represent the corresponding
proper-motion components in seconds of time and arc, re-
spectively, per Julian century (of TDB). Let p represent the
parallax of the star in arcseconds, and # its radial velocity in
km/s.

If the star’s radial velocity # is not known, set # = 0. If the
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parallax p of the star is unknown, unavailable, or zero to

within the accuracy of measurement, set it to some small but

finite positive number. The choice is fairly arbitrary, and is

needed only to avoid a mathematical indeterminacy; we use

1 X 10~ 7 arcsec, which effectively places objects of unknown

parallax at a radius of 10 Mpc (the “celestial sphere”).
Then compute the distance 7 to the star in AU:

r=1/sinp
~ (1/p)(3600-360) /2. (29)

Step (i): Form the position vector u(z,) of the star at the
catalog epoch #,, with respect to the solar system barycenter,
in the rectangular coordinate system defined by the Earth’s
mean equator and equinox of the catalog epoch, with com-
ponents in AU:

rcos & cos a
u(z,) =|rcosésina |. (30)
rsin §

Step (j): Convert proper-motion and radial-velocity val-
ues to units of AU/day:

Ml =, 15 cos 6/(36525p),
s = ps/(36525p), (31)
¥ = 86400#/4 ‘

where 4 is the number of kilometers in 1 AU; the value from
the TAU (1976) System of Astronomical Constants is
1.495 978 70 X 10%. These three quantities represent orthog-
onal components of the star’s space velocity, with respect to
the solar system barycenter, to the extent known from the
data available, in units of AU/day. These three quantities
are therefore the components of a velocity vector in curvilin-
ear coordinates.

Our use of the distance r as a multiplying factor in Egs.
(30) and (31) (in the form 1/p) is somewhat unconvention-
al for apparent place algorithms and is discussed in Sec. V.

It is worth considering several cases in which the available
data are incomplete. For extragalactic objects, proper mo-
tion and parallax are effectively zero. The radial velocity is
required only for relatively nearby stars for which foreshor-
tening effects (second-order changes in the apparent posi-
tion and motion of the star due to the shifting aspect of its
motion) are significant. However, the radial velocity is use-
less in this regard (and should be set to zero) if the parallax
(distance) is unknown. If the star’s radial velocity is zero or
unknown, or has been set to zero because the parallax is not
known, then = # = 0 and the above velocity vector is tan-
gent to the celestial sphere at the star’s catalog position
u(z,). Conversely, if the proper-motion components are
zero, then the star has no known tangential velocity. Also, it
may be the case that the proper-motion components are
known, but not the parallax. In such a case, if a “reasonable
guess” parallax value is not used, the values for either or both
of the computed velocity components u., or u; could be
greater than seems physically plausible. However, this is a
computational curiosity with no physical meaning or practi-
cal effect on the results of the calculation. The subject of
incomplete catalog information is discussed extensively in
Paper IV.

Step (k): Transform the above velocity components to
form the space velocity vector u(z,) of the star at the catalog
epoch t,, with respect to the solar system barycenter, with
components in AU/day:

1204
—sina —cosasind cosacosd]| |HMe
u(z) = cosa —sinasind sinacosd| |uj |
0 cos & sin § ¥

(32)

The above transformation corresponds to two simple rota-
tions. At this point, both the position vector u(#,) and the
velocity vector u(#,) are in the same rectilinear coordinate
system.

d) Compute and Apply the Space Motion of the Star Between
the Epoch of the Catalog and the Epoch of Observation

Step (1): Form the vector u,:

u, = u(y) +ulty) (2 —tp). (33)
The vector u, represents the position of the star at the epoch
of observation ¢, with respect to the solar system barycenter.
Both proper-motion and foreshortening effects are implicit-
ly included in u,, since the vector u(z,) represents the star’s
three-dimensional space velocity.

There is no explicit correction for light time in stellar ap-
parent place computations; it is assumed that the vectors
u(#,) and u(¢,) implicitly include the light time and its time
derivative.

e) Shift the Origin from the Barycenter of the Solar System to
the Center of Mass of the Earth
Step (m): Form the vector u;:
u; =u, — E(z). (34)

The vector u, represents the geocentric position of the star at
the epoch of observation ¢. This step therefore introduces
annual parallax.

/) Evaluate and Include the Effect of the Relativistic
Deflection of Light in the Sun’s Gravitational Field

Steps (n)—(p): Follow steps (n)-(p) in Sec. III f to ob-
tain the vector u,, the geocentric direction of the star correct-
ed for the relativistic deflection of light.

g) Evaluate and Include the Aberration of Light

Steps (q)—(r): Follow steps (q)—(r) in Sec. III g.

h) Apply Precession to the Coordinate System
Steps (s)—(t): Follow steps (s)—(t) in Sec. III A.

i) Apply Nutation to the Coordinate System
Steps (u)—(w): Follow steps (u)—(w) in Sec. ITI .

Jj) Express Position Vector of the Star in Spherical Coordinates
Step (x): Follow step (x) in Sec. III ;.

V. NOTES ON COMPUTER IMPLEMENTATION OF APPARENT
PLACE ALGORITHMS

We have found it expedient to implement each of the ma-
jor steps above as a separate computer subroutine. This mod-
ular approach allows most of the same subroutines to be used
in the apparent place computation of both stars and planets.
It also allows for testing of alternative, or simplified, algor-
ithms for special purposes.

It was the desire for such a unified approach to these com-
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putations that resulted in the use of position vectors
throughout the development for both stars and planets. In
many apparent place developments, unit vectors are used for
stars and position vectors are used for planets (for example,
see Yallop’s algorithms in the Astronomical Almanac). In
such developments, the distance of a star is assumed to be 1
and its parallax becomes a multiplicative factor for the radial
velocity in Sec. IV ¢ and the Earth’s position vector in Sec.
IV e. In contrast, in the above development “real” position
and velocity vectors with ordinary units (AU and AU/day)
are used throughout, for both stars and planets. The penalty
for this approach is that the zero-parallax case must be
avoided. In any case, the two kinds of developments are
equivalent and if correctly implemented will yield identical
results. The choice has more to do with esthetics than sub-
stance.

It should be noted that many of the quantities that are
developed during the course of an apparent place computa-
tion may be saved and reused during a subsequent computa-
tion for a different body, so long as the epoch of observation
remains the same. Quantities in this category include the
time arguments, the ephemeris data for the Earth and Sun,
and the precession and nutation matrices. Computer sub-
routines can be coded to save such data from one call to the
next. Then, if a large number of apparent places are to be
computed, it is most efficient to compute the apparent places
of all bodies at a given observing epoch before moving to a
new observing epoch.

Our experience is that the major computational burden in
the above algorithm involves the retrieval of data from the
planetary ephemeris in steps (f)-(1) and the evaluation of
the two nutation angles Ay and Aein step (u). Inboth cases,
there are several ways of obtaining the necessary data.
Closed-form algorithms consisting of lengthy trigonometric
series are available in both cases. (The 1980 IAU Theory of
Nutation is defined by two 106 term trigonometric series.)
The convenience of such self-contained algorithms must,
however, be weighed against the large number of calcula-
tions that are required.

If computation time becomes critical (such as within tele-
scope control systems or in microcomputer implementa-
tions) the method of obtaining the ephemeris and nutation
data should be reviewed. Self-contained algorithms can of-
ten be considerably simplified by truncating small terms
from the series, if high precision in the final apparent places
is not required. Consideration should also be given to pre-
computing the required data at fixed intervals and storing
the data in an external file that can be efficiently accessed
and interpolated. Planetary ephemeris data are frequently
distributed in this form anyway. Precomputing and storing
the values of the elements of the combined precession-nuta-
tion matrix (referred to as R at the end of step (v)) is also
feasible: see Sec. B of the Astronomical Almanac.

VI. TOPOCENTRIC PLACE

The topocentric place of a star or planet refers to its direc-
tion as it would actually be observed from some place on
Earth, neglecting atmospheric refraction. The apparent
place that we have developed in Secs. III and IV can be
thought of as the observed direction of an object for a ficti-
tious observer located at the center of a transparent, nonre-
fracting Earth. The difference between the apparent place
and the topocentric place is due to the slightly different posi-
tion and velocity of an observer on the Earth’s surface com-
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pared with those of the fictitious observer at the Earth’s cen-
ter. The change in the direction of the observed body due to
the difference of position is referred to as geocentric parallax,
and is significant only for objects in the solar system. It is
typically a few arcseconds for most solar system bodies, but
reaches about 1° for the Moon. The change in direction due
to the difference in velocity (due to the rotation of the
Earth) is referred to as diurnal aberration, and is indepen-
dent of the distance of the observed body. It is always less
than 0.32 arcsec.

Atmospheric refraction also affects the observed direction
of celestial objects. In fact, refraction at all wavelengths is
orders of magnitude larger than either geocentric parallax or
diurnal aberration. However, because of the difficulties of
accurately modeling refraction and the need for meteoro-
logical data taken at the time of the observation, refraction is
usually considered a correction to observations rather than
an effect to be taken into account in computing a topocentric
place. It will not be considered further here.

The simplest way of computing a topocentric place is to
compute an apparent place using the position and velocity
vectors of the observer rather than the center of mass of the
Earth. That is, modify the vectors E(¢) and E(¢) by the
position and velocity of the observer relative to the center of
mass of the Earth, immediately after step (f). This proce-
dure is equally applicable to both stars and solar system ob-
jects. The necessary computations are described below,
which should be considered optional extensions to step (f) in
Secs. 1116 and IVb. The development below requires quanti-
ties related to precession and nutation that, in the computa-
tion of geocentric apparent places, are not needed before step
(s). These quantities should be computed and used here and
saved for later use; they are specifically noted as they arise.

a) Determine the Location and Universal Time of
Observation

Step (f.1): Determine the universal time of observation,
specifically, the epoch of observation in the UT1 timescale.
UT1 is affected by unpredictable irregularities in the Earth’s
rotation but is always within 0.9 s of UTC, the latter defining
civil time and broadcast worldwide according to interna-
tional convention. The difference AUT = UT1 — UTC is
determined and distributed by the International Earth Rota-
tion Service; the value of AUT to within the nearest 0.1 s
(denoted DUT) is also coded into UTC time broadcasts.

Step (f.2): Obtain the observer’s geodetic latitude ¢, lon-
gitude 4, and height 4, the latter in meters. According to the
current IAU convention, east longitudes are positive, west
negative. The height specifically refers to the height above
the Earth’s reference ellipsoid, but for most purposes the
height above mean sea level (the regional geoid) can be used.

b) Compute the Sidereal Time at the Epoch of Observation

Step (f.3): Obtain the two fundamental nutation angles,
Ay and A€, and compute the mean and true obliquity of the
ecliptic, eand €. See steps (u) and (v) of Sec. I1Ii for details.
Save all of these quantities for later use.

Step (f.4): Using the UT1 epoch of observation as the
argument, compute the Greenwich mean sidereal time s,,,:

s, = 67310:54841 + (876600" + 8640184:812866) T,
+ 0809310472 — 62X 107° T3, (35)
where T, is the number of centuries of 36 525 days of univer-
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sal time from 2000 January 1, 12" UT1 (JD 2451545.0
UT1); see Aokietal. (1982). The Greenwich apparent side-
real time is then

s=5, + A¢cos €. (36)

The quantity Ay cos € is the “equation of the equinoxes,”
which must be expressed in units of time. Both the Green-
wich mean sidereal time and the Greenwich apparent side-
real time, along with the equation of the equinoxes, are tabu-
lated in the Astronomical Almanac for each day of the year at
0" UT1.

Step (f.5): Compute the local apparent sidereal time s’ at
the place and epoch of observation:

sS=s+4, (37

where A is the observer’s longitude (east positive), expressed
in units of time.

¢) Determine the Position and Velocity Vectors of the Observer
with Respect to the Center of Mass of the Earth
Step (f.6): Compute the following two scalar quantities:
C=1/Jcos’ ¢ + (1 — fH?sin’ @,
S=(1-57%C, (38)

where ¢ is the observer’s geodetic latitude and / is the adopt-
ed flattening of the Earth’s reference ellipsoid;

f=0.003 352 81 in the IAU (1976) System of Astronomi-

cal Constants.

Step (f.7): Compute the geocentric position and velocity
vectors of the observer with respect to the true equator and
equinox of date:

[(aC + h) cos ¢ cos s’
(aC+ h) cos gsins' |,

| (aS'+ h) sing

g'(t) =wkXg'(1)

[ — w(aC + h) cos ¢ sin s’
= w(aC+ h) cos pcoss’|,
1 0

where a is the equatorial radius of the Earth in meters, w is
the rotational angular velocity of the Earth in radians/s, ¢ is
the geodetic latitude of the observer, 4 is the height of the
observer in meters, k is a unit vector pointing in the +z
direction (toward the north celestial pole of date), and s’ is
the local apparent sidereal time at the time of observation,
expressed in angular units. The quantity ais 6 378 140 in the
IAU (1976) System and w is 7.292 115 146 7x 103 (Aoki
et al. 1982). More information on the computation of an
observer’s geocentric coordinates may be found in the Astro-
nomical Almanac, pp. K11-K 13, Mueller (1969), and Taff
(1981).

The above expressions do not take into account polar mo-
tion, which affects the components of the observer’s geocen-
tric position vector at the 10 m (0.3 arcsec) level. Neglecting
polar motion affects the computed topocentric place of the
Moon by several milliarcseconds, with a much smaller ef-
fect, inversely proportional to distance, for other bodies. If
effects at this level are important, corrections are also re-
quired to refer the regional geoid—the coordinate system for
the observer’s geodetic latitude, longitude, and height—to
the Earth’s reference ellipsoid; see the Astronomical Al-
manac, pp. K12-K13. Also ignored are the unpredictable
variations in the Earth’s angular velocity (length of day),

g =

(39)
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but these remain below a part in 107 and affect the topocen-
tric place only at the submicroarcsecond level.

If the geocentric “Earth-fixed” position vector of the ob-
server is known, then steps (f.2), (f.5), (f.6), and (f.7)
above can be replaced by the following simple procedure.
Define g to be the position vector of the observer in an Earth-
fixed, geocentric, right-handed coordinate system with the
xy plane the Earth’s equator, the xz plane the Greenwich
meridian, and the z axis pointed towards the north terrestrial
pole. If the components of g are expressed in meters, then gis
simply rotated by the angle s, the Greenwich apparent side-
real time in angular units, to obtain g'(z):

coss —sins O
g'(t) =|sins coss O]g (40)
0 0 1

The velocity g'(¢) follows immediately from the cross-prod-
uct relation g'(¢) = wk X g'(2).

Step (£.8): Convert the geocentric position and velocity
vectors to units of AU and AU/day, respectively:

g(r) =g'(£)/4,
g(2) = g'(¢) -86400/4, (41)

where A, the number of meters in 1 AU, is
1.495 978 70 10", from the IAU (1976) System. (Note
that g(#) is distinguished from g.)

d) Transform the Instantaneous Position and Velocity Vectors
of the Observer to the Space-Fixed Frame

Step (f.9): Transform the vectors g(¢) and g(¢) to the
coordinate system defined by the Earth’s mean equator and
equinox of the reference epoch, which is the space-fixed co-
ordinate system in which the position and velocity of the
Earth are expressed:

G(1) =P~ 'N~'g(r) =P'N'g(s) = R'g(1),

G(1) =P~ 'N~'g(r) =P'N'g(s) = R'g(1), (42)
where P and N are the precession and nutation matrices,
developed in steps (s)—(w) of Secs. III4 and IIIi. R is the
combined precession-nutation matrix given in the Astro-
nomical Almanac. Here, the inverse of each matrix is used,
which is simply its transpose. The most efficient procedure
would be to evaluate the elements of these matrices at this
point and save the elements for later usein steps (t) and (w).
Steps (s), (u), and (v) could therefore be skipped.

Strictly, the precession and nutation matrices define a
transformation between a space-fixed system and a slowly
rotating system, the slow rotation being the changing orien-
tation of the Earth’s axis due to external torques which the
precession and nutation theories describe. Therefore, the
conversion of the observer’s velocity given in Eq. (42) is
missing a Coriolis term. However, the equivalent linear ve-
locity of this rotation is of order 10~° m/s for an observer on
the surface of the Earth, comparable to the tracking velocity
of large telescopes and negligible.

e) Adjust the Position and Velocity Vectors of the Earth to
Include the Position and Velocity of the Observer

Step (£.10): Add the vectors G(#) and G(1), obtained
above, representing the position and velocity of the observer
with respect to the center of mass of the Earth, to E(¢) and
E(1), obtained in step (f), representing the position and ve-
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locity of the center of mass of the Earth with respect to the
solar system barycenter:

O(?) =E(1) +G(1),
o) =E@) + G). (43)

The resulting vectors, O(¢) and O(¢), represent the position
and velocity vectors of the observer with respect to the solar
system barycenter. Then redefine the vectors E(¢) and E(¢)
to be identical to O(s) and O(¢): E(2) =0(1), E(?)

= O(#). At this point, proceed with step (g) using the rede-
fined E(¢) and E(#).

Continuing at step (g) in Secs. II1d or IV, the other steps
follow as before, except that the elements of the precession
and nutation matrices need not be recomputed in steps (s)—
(w). The right ascension a' and declination 6’ obtained at
step (x) represent the topocentric place of the object at the
epoch of observation. The topocentric apparent hour angle
of the object is given by &' = 5" — ', where objects west of
the meridian (setting) have positive hour angles.

In many cases the above procedure can be simplified with
negligible error to the final topocentric right ascension and
declination. The most care is needed for objects in the inner
solar system when the highest precision is required. For ob-
jects beyond the inner solar system, to milliarcsecond preci-
sion, nutation can be ignored throughout. That is, mean
sidereal time can be used instead of apparent sidereal time
(the equation of the equinoxes can be considered zero) and
the nutation rotation in Eq. (42) can be neglected (that is, N
can be considered the unity matrix). Additionally, the dif-
ference between the UT1 and UTC timescales can be ig-
nored. However, these simplifications may not result in a
real computational saving. The nutation parameters would
have to be computed anyway in a later step. Furthermore,
these simplifications affect the computed sidereal time at the
1 s level, and will therefore cause errors in the computed
topocentric hour angle of this magnitude. Therefore, in
many cases, carrying out the full procedure, while saving the
values of the relevant nutation and time variables for later
use, may be the most prudent course.

VII. DIFFERENTIAL ASTROMETRY: VIRTUAL PLACE, LOCAL
PLACE, AND ASTROMETRIC PLACE

For differential astrometric measurements, the algo-
rithms in Secs. III and IV can be simplified. In differential
work it is necessary only to consider effects which can alter
the angles between the position vectors of observed bodies,
i.e., arc lengths on the celestial sphere. The orientation of the
coordinate system is not considered of fundamental impor-
tance since in most cases the celestial and instrumental coor-
dinate systems are coupled. In any event, in differential ob-
serving, the coordinate system is not established until after
the fact, during the reduction of the observations.

For the reduction of high-precision differential astromet-
ric observations, therefore, the final precession and nutation
rotations need not be performed, and Eqgs. (1)a and (28)a
reduce to, respectively,

u(t') =f{gluz—7) —E@)1} (44)
and
u(r’) =f{glut) +u(z) (t—1) —E(®)]},  (45)

where all of the symbols have been defined in Secs. IIT and
IV. We term the resulting position the “virtual place” of the
planet or star. The virtual place is computed by following
steps (a)—(r) in Sec. III or IV then setting u, = us and skip-
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ping to step (x). The omission of the final precession and
nutation rotations does not introduce any approximations or
distortions since only orthogonal transformations are omit-
ted.

The virtual place can be thought of as an apparent place
expressed in the coordinate system of the reference epoch. It
represents the position of the star or planet as it would be
seen from the center of mass of the Earth at some date, in the
coordinate system defined by the Earth’s mean equator and
equinox of the reference epoch, if the Earth and its atmo-
sphere were transparent and nonrefracting.

We can also define a “local place,” which is essentially the
topocentric place expressed in the coordinate system of the
reference epoch. Local place is related to topocentric place in
the same way that virtual place is related to apparent place.
Specifically, the local place represents the position of a star
or planet as it would be seen from a specific location on Earth
at some date and time, in the coordinate system defined by
the Earth’s mean equator and equinox of the reference ep-
och, if the atmosphere were nonrefracting. To compute it,
simply add the procedure given in Sec. VI to the procedure
given immediately above for computing virtual place.
(Note: the precession and nutation rotations in the Sec. VI
procedure should not be omitted.) The local place has utility
beyond its use in relative astrometry and will be referred to
again in Sec. VIII.

In differential work it has also been customary, if not
strictly correct, to neglect both the gravitational deflection
of light (function g(...) above) and the aberration of light
(function f{(...) above). The assumption is that for sufficient-
ly small fields these effects—along with atmospheric refrac-
tion—are nearly identical for all observed bodies, so that
relative positions are not significantly affected by them. Any
residual distortion of the field resulting from the neglect of
these effects is assumed to be absorbed into plate constants
or similar parameters solved for in the data-reduction pro-
cess. In this case, Egs. (1) and (28) reduce to the very simple
forms

u(z’)=u(z—171)—E(2) (46)
and
u(t’) =u(%) +uls) (¢ —t) — E@), 47)

and the resulting position is referred to as the “astrometric
place” of the planet or star, respectively. The astrometric
place is computed by following steps (a)—(m) in Secs. Il or
IV then setting u, = u; and skipping to step (x).

However, it should be recognized that the gravitational
deflection of light should not really be ignored in this way
since it cannot in principle be absorbed into plate constants
or similar reduction parameters: the deflection is a function
not only of position but also distance. Although in any part
of the sky the direction of the deflection is the same for all
bodies, its magnitude is less for solar system bodies than for
stars (see Fig. 1). Generally, this detail is of little practical
importance since only in a few special cases can it cause
errors exceeding 0.01 arcsec.

Because they are simple to compute, astrometric places
have been widely used. Another attractive feature is that an
astrometric place can be directly plotted on an ordinary star
map with negligible error in the resulting field configuration.
Astrometric places are therefore used for the ephemerides of
faint or fast-moving solar system bodies, such as the ephe-
merides of minor planets and Pluto in the Astronomical Al-
manac.
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For observations of solar system bodies, it is frequently
useful to compute a topocentric astrometric place. Only the
correction for geocentric parallax is applied. To compute a
topocentric astrometric place, simply add the procedure giv-
en in Sec. VI to the procedure given immediately above for
computing astrometric place. (Again, the precession and
nutation rotations in the Sec. VI procedure should not be
omitted.) In this case, however, the observer’s velocity vec-
tor need not be computed since only the vector E(¢), not
E(?), is used in the astrometric place computation (aberra-
tion is ignored). Topocentric astrometric places of stars are
never required since the topocentric correction is vanish-
ingly small.

For the reduction of high-precision differential observa-
tions, the local place should be used. With available comput-
ing power it is straightforward to compute the local place of
all objects within a field and use the ensemble of local places
as the starting point for the reduction procedure.

VIII. A GENERAL APPROACH TO ASTROMETRIC
OBSERVABLES

The preceding sections have been devoted to the precise
definition and computation, within certain specific contexts,
of two angular quantities, right ascension and declination.
The importance and utility of the traditional equatorial ref-
erence system for celestial coordinates is self-evident to any
astronomer. Nevertheless, with the exception of equatorially
mounted telescopes, modern astronomical instrumentation
rarely relates directly to these two angles. Right ascension
and declination might be useful to the human observer, but
for many types of observations they are insufficient informa-
tion and most techniques at least require their transforma-
tion into quantities that are directly measurable or controlla-
ble. Quantities in the latter category might include shaft
encoder readouts, interferometric delays, occultation tim-
ings, coordinates of star images in a CCD frame, or the arriv-
al times of pulsar pulses. In all cases these quantities express
a relationship among two or more time-dependent vectors.
Therefore, we seek a general approach to transforming var-
ious vectors—which may represent the positions of astro-
nomical objects, the orientation of the Earth, the location of
the observer, or the directions of instrumental axes—to a
common, space-fixed (inertial) coordinate system in which
these relationships can be most simply expressed.

The common space-fixed coordinate system to which all
relevant vectors will be transformed is the rectangular, right-
handed system with the xy plane parallel to the Earth’s mean
equator of a specific reference epoch ¢,, the x axis pointed
toward the mean equinox of f, and the z axis pointed
towards the mean north celestial pole of ,. The spatial origin
of this system can be considered arbitrary. The barycentric
timescale TDB is appropriate for use within this system.
(The transformation between various timescales was dis-
cussed in Sections Ilc and IIla.) Generally, ¢, will be the
epoch J2000.0, Julian Date 2451545.0 TDB.

The general approach that we outline here consists of five
broad steps: (1) defining the applicable vector relationships
which yield scalar observables; (2) expressing the “terrestri-
al” vectors, those tied in some way to the Earth’s crust or
ground-based instrumentation, in a suitable Earth-fixed co-
ordinate system; (3) transforming these vectors to the
space-fixed system; (4) expressing the topocentric direction
of an astronomical object, as seen by the ground-based in-
strumentation, in the space-fixed system; and (5) carrying
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out the vector operations defined in step (1) to yield the
needed quantities. We now discuss these steps in some detail.

a) Define the Required Vector Relationships

First, the vector expressions that lead to scalar observa-
bles must be defined. This step is very technique- and instru-
ment-specific. In many cases the required quantities are, to a
first approximation, the dot product of two vectors. For ex-
ample, suppose § represents the unit vector in the direction of
a celestial object. Thegn the zenith distance of the object is
arccos (8°V), where V is a unit vector pointing toward the
local vertical. Interferometric delay is basically B-§/c, where
B is the baseline vector and c is the speed of light. Similarly,
the arrival time of a pulsar pulse at a terrestrial observer is
different by (E + G)-§/c from its arrival time at the solar
system barycenter, where G is the observer’s geocentric posi-
tion vector and E is the position vector of the Earth with
respect to the barycenter. These relationships are obviously
purely geometric. The particular quantity required may also
depend on nongeometric effects such as atmospheric propa-
gation or instrumental response, effectively adding scalar
terms to the expressions. Here, however, we limit ourselves
to the geometry of the observations.

b) Express the Terrestrial Vectors in an Earth-Fixed
Coordinate System

We next treat those vectors from the first step that are
associated with Earth-based instrumentation or in some oth-
er way are directly tied to the Earth’s crust. Examples would
include the local vertical, the location of the geographic pole,
an interferometer baseline, or other instrumental axes.
These vectors are to be expressed in the Earth-fixed, rotat-
ing, rectangular, right-handed system with origin at the cen-
ter of mass of the Earth (for the cases where an origin needs
to be specified) in which the xy plane is the Earth’s equator,
the xz plane is the Greenwich meridian, and the z axis points
towards the north geographic pole. In some cases it may be
expedient to first express these vectors in a local horizon-
based system then rotate them, first by geodetic latitude,
then by longitude, into the above system. Three simple but
illustrative examples of vectors expressed in the above-de-
fined Earth-fixed coordinate system are given below (all
symbols used have been defined in Sec. VI).

Geocentric position vector of observer:

(@C+ h) cos pcos A
g=|(aC+h)cosgsini |;
(aS+ h) sin ¢

(48a)

Unit vector toward local vertical (neglecting geophysical
deflection):

cos ¢ cos A
V=|cos¢sind |;
sin ¢

(48b)

Unit vector toward geographic pole (or, along polar axis
of ideal equatorial mount):

0

z=10]. (48¢c)
1
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¢) Transform the Terrestrial Vectors into the Space-Fixed
System

An arbitrary vector, X, expressed in the Earth-fixed sys-
tem, is transformed into the space-fixed system by a series of
rotations, embodied in four matrices as follows:

X(2) =P7IN7'SW x
=P'N'SW x. (49)

This transformation has been previously discussed, in the
context of VLBI observations, by Cannon (1978) and Ma
(1978). In the above, P and N are the precession and nuta-
tion matrices, developed in steps (s)—(w) of Secs. III4 and
I11i. Here, as in Sec. V1d, the inverse of each of these two
matrices is used, which in both cases is simply the transpose.
The S matrix is the “spin,” or Earth-rotation matrix; it is
responsible for most of the time dependency of the trans-
formed vector (although all four above matrices are time
dependent) and is defined as follows:

coss —sins O
S=|sins coss O], (50)
0 0 1

where s is the Greenwich apparent sidereal time of the obser-
vation, developed in Sec. VIb. The W matrix is the “wobble,”
or polar-motion matrix, and is defined as follows:

1 0 —-X
W=|0 1 Y|, (1)
X -7 1

where X and Y are the conventionally defined coordinates of
the pole of rotation with respect to the Conventional Inter-
national Origin (loosely, the geographic pole), expressed in
radians. The coordinates X and Y are published monthly by
the International Earth Rotation Service; they amount at
most to a few tenths of an arcsecond, change slowly (typical-
ly a few milliarcseconds per day), and for many applications
can be neglected (W becomes the unity matrix).

Transform the geocentric position vector of the observer
to the space-fixed frame using the above transformation
(8—G(?)). Similagly transform all other relevant terrestrial
vectors (e.g., V-V (?), Z—Z(t), etc.). Note that the defini-
tion and transformation of the geocentric position vector of
the observer described here is equivalent to that in Secs. Ve
and V1d, except that in Sec. VId polar motion was ignored so
the W matrix never appears.

Additionally, transform to the space-fixed system the or-
thonormal basis vectors of the coordinate system defined by
the Earth’s true equator and equinox of date. These three
unit vectors are not strictly in the Earth-fixed system but are
closely related to it. If &, is the unit vector in the direction of
the true celestial pole of date, &, is the unit vector in the
direction of the equinox of date, and €, is the unit vector
orthogonal to €, and &, defining a right-handed system, then
these three vectors, expressed in the space-fixed system, are:

[0]
&, =PN'|0
[ 1
[1]
é =P'N'|0 (52)
0]
&, =8¢, X8&,
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For many types of observations only &, is needed, however.

d) Obtain the Topocentric Direction of the Celestial Body in
the Space-Fixed System

The topocentric direction of the star or planet as seen by
the terrestrial observer, expressed relative to the axes of the
space-fixed system, is simply the local place of the body, as
described in Sec. VII. The detailed computational steps are
those in Secs. VII and VI and either Sec. IV (for stars) or
Sec. III (for planets). The most logical progression is to
work backwards from Sec. VII.

In carrying out the computational steps, note that, in es-
sence, the computations described in Sec. VI have already
been performed. The purpose of Sec. V1 is simply the deter-
mination of the geocentric position and velocity of the ob-
server, expressed in the space-fixed system. In the steps im-
mediately above, however, the geocentric position vector of
the observer in the space-fixed system has already been com-
puted, and the geocentric velocity vector is readily available.
Specifically, if G(¢) is the geocentric position vector of the
observer, and &, is the unit vector in the direction of the
celestial pole of date, then the velocity vector of the observer
is simply G(¢) = wé, X G(¢); wis the rotational angular ve-
locity of the Earth and all vectors are expressed in the space-
fixed system. (The value of w is 7.292 115 146 7X 10" ra-
dians/s; conversion of G(¢) and G(#) to units of AU and
AU/day, respectively, is required.) All that remains of the
Sec. VI procedure is step (f.10) in Sec. Ve, where the posi-
tion and velocity vectors of the observer are added to the
corresponding vectors of the center of mass of the Earth.

The remaining steps of the local place computation are
unchanged until the last step (step (x)). That step should be
replaced by a simple normalization of the vector u;: § =
u,/|u,|. The unit vector § then represents the direction of the
star or planet, as seen by the observer, relative to the axes of
the space-fixed coordinate system.

e) Carry Out the Necessary Vector Operations to Obtain
Scalar Observables

At this point, all of the relevant vectors have been trans-
formed into the space-fixed coordinate system defined by the
Earth’s mean equator and equinox of the reference epoch ¢,
The operations on these vectors defined in the first step
above can therefore be carried out. All ordinary astrometric
quantities can in fact be obtained from vector relationships.
For example, using only previously defined vectors, we have:

Zenith distance of object = arccos[ﬁ-f’(t)],
Topocentric declination of object = arcsin(§+€,), (53)

L . . §é
Topocentric right ascension of object = arctan [%]

§e€
Many other relationships can be derived as well; see, for
example, Murray (1983).

The approach outlined in this section is primarily useful in
deriving quantities that essentially are a measure of the angle
between a terrestrial vector and a celestial vector. We have
established a common coordinate system for relating vectors
associated with well-defined directions, locations, or objects
on the rotating Earth with those associated with the direc-
tions of celestial bodies. With some modifications, however,
much of the above can be applied to other types of observa-
tions that are geometry sensitive, for example, pulsar tim-
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ings, VLBI observations, and eclipse and occultation cir-
cumstances.

IX. CONCLUSION

The adoption of a new set of astronomical constants by the
IAU in 1976, along with the related IAU resolutions con-
cerning dynamical timescales, the equinox, nutation, and
Universal Time, are having a profound effect on the compu-
tation of the most basic astronomical angles when precisions
of an arcsecond or better are required. The changes were
intended to eliminate known sources of systematic errors
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and facilitate the construction of highly precise astronomical
reference frames, limited only by the observational uncer-
tainties. With the computing power currently available, very
sophisticated models of the observing geometry are possible,
effectively eliminating computational approximations as an
€rror source.

In this paper we have presented a series of algorithms for
computing the apparent direction of astronomical objects to
milliarcsecond precision. Effectively, these algorithms are a
practical implementation of the new IAU system, forming
the basic link between astrometric observations and the fun-
damental reference data derived therefrom.
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